Plant roots are melting permafrost and unearthing vast stores of carbon emissions

As plants begin to spread across melting permafrost, scientists are growing ever more worried their roots will stir microbes into unleashing vast stores of carbon.

To scientists, roots are known as rhizomes, and when these tendrils extend deeper into the soil, it accelerates microbial decomposition by up to fourfold, potentially ‘priming’ the frozen ground for further thawing. 

This mechanism, known as the rhizosphere priming effect (RPE), has been known since the 1950s, and it could have a huge impact on one of Earth’s most troubling carbon feedback loops.

Yet today, no climate models include rhizomes as a risk factor for melting permafrost – in large part because the data simply doesn’t exist.

“It is important to expand the knowledge in this field,” researchers wrote in paper from 2017, “as the magnitude and direction of [rhizome priming] are not very well understood, and contradicting results have been observed.”

For the first time, researchers have now combined high-resolution data on both the spread and depth of key plants growing in Arctic permafrost to determine how much carbon they are actually releasing.

As rising temperatures stimulate further plant growth, the researchers estimate that rhizome priming alone enhances the overall respiration of soil microbes by roughly 12 percent. By 2100, that means an absolute loss of around 40 billion tonnes of carbon from northern permafrost.

And that’s so not what we were expecting. In fact, it’s practically blown a hole in our climate budget.

To keep global warming under the 1.5 °C threshold, scientists have estimated that at a minimum we must keep our carbon emissions to 200 billion tonnes, and currently, 50 to 100 billion tonnes is put aside for thawing permafrost.

These new figures make up a quarter of that budget, which means there are minute and overlooked ecological interactions that we are clearly not taking into account. And those between plants and soil microbes appear to be high on the list.


The impact of plant roots and soil organic microbes on thawing permafrost. (Keuper et al., Nature Geoscience, 2020)

Basing their results on a meta-analysis of plant and soil experiments, researchers say we will have to constrain our emissions much more than we were bargaining on.

In 2019, the world emitted about 43 billion tonnes of carbon dioxide. By 2100, soil microbes munching on sugar from newly-formed roots will have unleashed nearly the equivalent of that into our atmosphere. 

The authors say they have identified hotspots for RPE losses in boreal forests, including Hudson Bay in Canada and Siberian lowlands, as well as large swathes of eastern Siberia.

We’ve known about rhizome priming since the 1950s, but in all that time we’ve researched the mechanism very little, and we still don’t know how this interaction will change in a rapidly warming Arctic, especially for other greenhouse gases.

Previous studies have shown that the soil in which rhizomes reside is an important sink for methane, which is even more potent as a global warmer than carbon dioxide, especially over shorter time-frames. 

The new study, however, was focused solely on carbon. What’s more, it did not explore how soil microbes differ, or if rhizomes prime deeper soil beyond their physical reach, possibly through the leaching of minerals and gases. 

When permafrost stores as much carbon as all the plants in the world and all the carbon in the atmosphere together, roots are clearly a huge deal, and we need to know more about what they’re doing.

The study was published in Nature Geoscience.

Products You May Like

Articles You May Like

NASA’s About to Make a Big Announcement About Mars. Here’s What We Know.
This Freaky Worm Has ‘Outstanding Vision’, And Scientists Don’t Know Why
Voynich Manuscript Finally Decoded? Medieval Sex Secrets May Hide in Mysterious Text
Radical NASA Study Says This Spacecraft Formation Could Reveal New Physics
NASA Spots Surfboard-Shaped Object Speeding Past The Moon

Leave a Reply

Your email address will not be published. Required fields are marked *